PRACTICE MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) State carefully: The Mean Value Theorem

Mean Value Theorem: Let f be a function that satisfies the following two hypotheses:

1) f is continuous on the closed interval $[a, b]$
2) f is differentiable on the open interval (a, b)

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

(b) A particle moves in a straight line with acceleration at time t given by $a(t)=$ $2 t \mathrm{~m} / \mathrm{sec}^{2}$. It has initial velocity $v(0)=5 \mathrm{~m} / \mathrm{sec}$. What is the net change in position between $t=0$ and $t=3$?

Our goal is to calculate $s(3)-s(0)$.
By antidifferentiating $a(t)=2 t$, we get $v(t)=t^{2}+C$. But $v(0)=5$, so $0^{2}+C=5$, so $C=5$. Hence, $v(t)=t^{2}+5$.

Now by antidifferentiating $v(t)=t^{2}+5$, we get $s(t)=\frac{t^{3}}{3}+5 t+C^{\prime}$
Hence $s(3)-s(0)=\frac{3^{3}}{3}+15+C^{\prime}-\left(0+0+C^{\prime}\right)=24+C^{\prime}-C^{\prime}=24$.
So $s(3)-s(0)=24 \mathrm{~m}$
2. Find the equation of the line tangent to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$

Using implicit differentiation, we get:

$$
4\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=25\left(2 x-2 y y^{\prime}\right)
$$

And plugging in $x=3$ and $y=1$, we get:

$$
4(9+1)\left(6+2 y^{\prime}\right)=25\left(6-2 y^{\prime}\right)
$$

That is:

$$
240+80 y^{\prime}=150-50 y^{\prime}
$$

So solving for y^{\prime}, we get:

$$
y^{\prime}=-\frac{9}{13}
$$

Hence, an equation of the tangent line to the curve at $(3,1)$ is: $y-1=-\frac{9}{13}(x-3)$
3. (a) Let $h(x)=f(g(x))$, where $f, f^{\prime}, g, g^{\prime}$ are differentiable everywhere. Find $h^{\prime \prime}(0)$, given that $f^{\prime}(2)=5, f^{\prime \prime}(2)=4, g(0)=2, g^{\prime}(0)=3$, and $g^{\prime \prime}(0)=2$.

We have:

$$
h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Hence:

$$
\begin{aligned}
h^{\prime \prime}(x) & =\left(f^{\prime}(g(x)) g^{\prime}(x)\right)^{\prime} \\
& =\left(f^{\prime}(g(x))\right)^{\prime} g^{\prime}(x)+f^{\prime}(g(x)) \cdot g^{\prime \prime}(x) \quad \text { (By the product rule) } \\
& =f^{\prime \prime}(g(x)) g^{\prime}(x) \cdot g^{\prime}(x)+f^{\prime}(g(x)) g^{\prime \prime}(x) \quad \text { (By the chain rule) } \\
& =f^{\prime \prime}(g(x)) \cdot\left(g^{\prime}(x)\right)^{2}+f^{\prime}(g(x)) \cdot g^{\prime \prime}(x)
\end{aligned}
$$

In particular:

$$
\begin{aligned}
h^{\prime \prime}(0) & =f^{\prime \prime}(g(0)) \cdot\left(g^{\prime}(0)\right)^{2}+f^{\prime}(g(0)) \cdot g^{\prime \prime}(0) \\
& =f^{\prime \prime}(2) \cdot(3)^{2}+f^{\prime}(2) \cdot 2 \\
& =4 \times 9+5 \times 2 \\
& =46
\end{aligned}
$$

Therefore $h^{\prime \prime}(0)=46$
(b) Use differentials to estimate the amount of paint needed to apply at coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 cm .

We know that $V=\frac{2}{3} \pi r^{3}$ (remember that we have a hemisphere here!), so $d V=\frac{2}{3} 3 \pi r^{2} d r=2 \pi r^{2} d r$.

Now the amount of paint needed is $V(r+d r)-V(r)=\Delta V \approx d V=$ $2 \pi r^{2} d r$.

Here $d r=0.05$, and $r=25$ (remember that the diameter, not the radius, is 50 cm thick!), hence:

$$
d V=2 \pi(25)^{2}(0.05)=\frac{125 \pi}{2} \mathrm{~cm}^{3}
$$

4. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of $2 \mathrm{ft} / \mathrm{s}$, how fast is the angle between the top of the ladder and the wall changing when that angle is $\frac{\pi}{4}$ radians?
1) Picture:

1A/Practice Exams/Triangle.png

2) We want to find $\frac{d \theta}{d t}$
3) We have $\sin (\theta)=\frac{x}{10}$
4) Differentiating with respect to t, we get: $\cos (\theta) \frac{d \theta}{d t}=\frac{1}{10} \frac{d x}{d t}$
5) We know $\theta=\frac{\pi}{4}$ and $\frac{d x}{d t}=2$, so $\cos \left(\frac{\pi}{4}\right) \frac{d \theta}{d t}=\frac{2}{10}$, so $\frac{\sqrt{2}}{2} \frac{d \theta}{d t}=\frac{1}{5}$, so $\frac{d \theta}{d t}=\frac{2}{5 \sqrt{2}}=\frac{\sqrt{2}}{5} \mathrm{rad} / \mathrm{s}$
5. Compute
(a)
$\lim _{x \rightarrow \infty}\left(x e^{\frac{1}{x}}-x\right)=\lim _{x \rightarrow \infty} x\left(e^{\frac{1}{x}}-1\right)=\lim _{x \rightarrow \infty} \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{e^{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} e^{\frac{1}{x}}=e^{0}=1$
where $\stackrel{H}{=}$ means 'by l'Hopital's rule' (which is legitimate, because we have the indeterminate form $\frac{0}{0}$)
(b) $\frac{d}{d t}\left(t^{\sin (t)}\right)$

This is just logarithmic differentiation:

1) Let $y=t^{\sin (t)}$
2) $\ln (y)=\sin (t) \ln (t)$
3) $\frac{y^{\prime}}{y}=\cos (t) \ln (t)+\frac{\sin (t)}{t}$
4) $y^{\prime}=\left(\cos (t) \ln (t)+\frac{\sin (t)}{t}\right) y=\left(\cos (t) \ln (t)+\frac{\sin (t)}{t}\right) t^{\sin (t)}$

So $\frac{d}{d t}\left(t^{\sin (t)}\right)=\left(\cos (t) \ln (t)+\frac{\sin (t)}{t}\right) t^{\sin (t)}$
(c)
$\lim _{t \rightarrow 0^{+}} \frac{2 \sqrt{t}}{\arcsin (t)} \stackrel{H}{=} \lim _{t \rightarrow 0^{+}} \frac{\frac{2}{2 \sqrt{t}}}{\sqrt{\sqrt{1-t^{2}}}}=\lim _{t \rightarrow 0^{+}} \frac{\sqrt{1-t^{2}}}{\sqrt{t}}=\frac{1}{0^{+}}=\infty$
Also, the use of l'Hopital's rule is legitimate because we have the indeterminate form $\frac{0}{0}$
6. Let $h(x)=3 x^{5}-5 x^{3}+3$
(a) Find the intervals of increase and decrease
$h^{\prime}(x)=15 x^{4}-15 x^{2}=15 x^{2}\left(x^{2}-1\right)=15 x^{2}(x-1)(x+1)$
Then $h^{\prime}(x)=0$ if and only if $x=0$ or $x= \pm 1$.
Now, by using the following sign table (this is just one way of doing this problem, if you find the right answer using another way, that's fine too!), we get:

- h is increasing on $(-\infty,-1) \cup(1, \infty)$
- h is decreasing on $(-1,0) \cup(0,1)((-1,1)$ is also a valid answer $)$

1A/Practice Exams/Steeltable1.png

x	-00 -1		0		1		oo
x^{2}	+		\emptyset	+		+	
x-1	-	-		-			
$\mathrm{x}+1$	- \emptyset	+		+		+	
$h^{\prime}(\mathrm{x})$	+ $¢$	-	Φ	-			
h(x)							

(b) Find the local maxima and minima

The only critical numbers of h are 0 and ± 1. By the first derivative test, $h(-1)=-3+5+3=5$ is a local maximum (h^{\prime} changes sign from positive to negative there), and $h(1)=3-5+3=1$ is a local minimum (h^{\prime} changes sign from negative to positive).

Note: Notice that $h(0)=3$ is neither a local maximum or minimum, since h^{\prime} does not change sign at 0
(c) Find the intervals of concavity and inflection points

$$
h^{\prime \prime}(x)=60 x^{3}-30 x=60 x\left(x^{2}-\frac{1}{2}\right)=60 x\left(x-\sqrt{\frac{1}{2}}\right)\left(x+\sqrt{\frac{1}{2}}\right)
$$

Then $h^{\prime \prime}(x)=0$ if and only if $x=0$ or $x= \pm \sqrt{\frac{1}{2}}$
Again, using a sign table, we can conclude the following:

- h is concave up on $\left(-\sqrt{\frac{1}{2}}, 0\right) \cup\left(\sqrt{\frac{1}{2}}, \infty\right)$
- h is concave down on $\left(-\infty,-\sqrt{\frac{1}{2}}\right) \cup\left(0, \sqrt{\frac{1}{2}}\right)$.

In particular, $\left(-\sqrt{\frac{1}{2}}, h\left(-\sqrt{\frac{1}{2}}\right)\right)=\left(-\sqrt{\frac{1}{2}},-\frac{3}{4 \sqrt{2}}+\frac{5}{2 \sqrt{2}}+3\right),(0, h(0))=$ $(0,3)$, and $\left(\sqrt{\frac{1}{2}}, h\left(\sqrt{\frac{1}{2}}\right)\right)=\left(\sqrt{\frac{1}{2}}, \frac{3}{4 \sqrt{2}}-\frac{5}{2 \sqrt{2}}+3\right)$ are inflection points of h.

1A/Practice Exams/Steeltable2.png

x	-00		$)^{1 / 2}$	0	$(1 / 2)^{1 / 2}$			oo
x	-			Φ	+		+	
$x \cdot(1 / 2)^{1 / 2}$	-		-		-	0	+	
$\mathrm{x}+(1 / 2)^{1 /}$	-	\emptyset	+		+		+	
h"(x)	-	ϕ	+	\emptyset	-		+	
h(x)	C.D	I.P	C.U	I.P		I.P	C.U	

(d) Sketch the graph of h

1A/Practice Exams/Steelgraph.png

Note: The graph is not drawn to scale for more legibility.
7. A cylindrical can without a top is made to contain $V \mathrm{~cm}^{3}$ of liquid. Find the dimensions that will minimize the amount of metal required to make the can.

1) The surface area of the can is $S=\pi r^{2}+2 \pi r h$, where r is the radius of the can, and h is the height of the can (basically, $\mathbf{S}=$ area of the bottom disk + the area of the (cylindrical) side)
2) Now, we know that the volume of the can, $\pi r^{2} h$ is constant, equal to V. So $\pi r^{2} h=V$, so $h=\frac{V}{\pi r^{2}}$

In particular, we may rewrite the surface area as a function of r only, $S(r)=$ $\pi r^{2}+2 \pi r\left(\frac{V}{\pi r^{2}}\right)$, so $S(r)=\pi r^{2}+2 \frac{V}{r}$
3) The only constraint is that $r>0$
4) $S^{\prime}(r)=2 \pi r-2 \frac{V}{r^{2}}=0 \Leftrightarrow 2 \pi r=2 \frac{V}{r^{2}} \Leftrightarrow 2 \pi r^{3}=2 V$ (cross-multiplying) $\Leftrightarrow r=\sqrt[3]{\frac{V}{\pi}}$.
Now $S^{\prime}(r)<0$ if $r<\sqrt[3]{\frac{V}{\pi}}$ and $S^{\prime}(r)>0$ if $r>\sqrt[3]{\frac{V}{\pi}}$, so by the first derivative test for absolute extreme values, $r=\sqrt[3]{\frac{V}{\pi}}$ is the minimizer of V.
5) In particular, the dimensions that will minimize the amount of metal required to make the can are: $r=\sqrt[3]{\frac{V}{\pi}}$ and $h=\frac{V}{\pi r^{2}}=\frac{V}{\pi \frac{V^{\frac{2}{3}}}{\pi^{\frac{2}{3}}}}=\sqrt[3]{\frac{V}{\pi}}$
8. A sample of tritium -3 decayed to 94.5 percent of its original amount after one year.
(a) What is the half-life of tritium-3?

Let $m(t)$ be the mass of tritium -3 that remains after t years. Since this problem deals with radioactive decay, we know that $m(t)$ satisfies the differential equation $m^{\prime}(t)=k m(t)$ for some k, whose solution is:

$$
m(t)=C e^{k t}
$$

where C and k are constants.
We know that after one year, the sample decayed to 94.5 percent of its original amount, therefore $m(1)=0.945 m(0)$, that is:

$$
\begin{aligned}
C e^{k(1)} & =0.945 C e^{k(0)} \\
e^{k} & =0.945 \\
k & =\ln (0.945)
\end{aligned}
$$

Therefore $m(t)=C e^{\ln (0.945) t}=C(0.945)^{t}$.
To find the half-life of tritium-3, we are looking for the time t^{*} where $m\left(t^{*}\right)=\frac{m(0)}{2}$, that is:

$$
\begin{aligned}
C(0.945)^{t^{*}} & =\frac{C(0.945)^{0}}{2} \\
C(0.945)^{t^{*}} & =\frac{C}{2} \\
(0.945)^{t^{*}} & =\frac{1}{2} \\
t^{*} \ln (0.945) & =\ln \left(\frac{1}{2}\right)=-\ln (2) \\
t^{*} & =\frac{-\ln (2)}{\ln (0.945)} \approx 12.25
\end{aligned}
$$

So the half-life of tritium -3 is $\frac{-\ln (2)}{\ln (0.945)} \approx 12.25$ years.
(b) How long would it take for the sample to decay to 20 percent of its original amount?

Now we are looking for the time t^{*} where $m\left(t^{*}\right)=\frac{m(0)}{5}$, that is:

$$
\begin{aligned}
C(0.945)^{t^{*}} & =\frac{C(0.945)^{0}}{5} \\
C(0.945)^{t^{*}} & =\frac{C}{5} \\
(0.945)^{t^{*}} & =\frac{1}{5} \\
t^{*} \ln (0.945) & =\ln \left(\frac{1}{5}\right)=-\ln (5) \\
t^{*} & =\frac{-\ln (5)}{\ln (0.945)} \approx 28.45
\end{aligned}
$$

So it would take about $\frac{-\ln (5)}{\ln (0.945)} \approx 28.45$ years for tritium -3 to decay to 20 percent of its original amount.

